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Multiscale correlation functions in strong turbulence
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Under the framework of Yakhot@Phys. Rev. E57, 1737~1998!#, we model intermittent structure functions
in fully developed turbulence, based on the experimentally supported Markovian nature of turbulence cascades
@Friedrich and Peinke, Phys. Rev. Lett,78, 863 ~1997!#, and calculate the multiscaling correlation functions.
Fusion rules@L’vov and Procaccia, Phys. Rev. Lett.76, 2898 ~1996!#, which were experimentally tested
@Benzi, Biferale, and Toschi, Phys. Rev. Lett.80, 3244 ~1998!# to be compatible with almost uncorrelated
multiplicative process are analytically checked by direct calculations.

PACS number~s!: 47.27.Ak, 47.27.Gs, 47.27.Jv, 47.40.Ki
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One of the most important issues in stationary turbule
is the intermittent behavior of velocity fluctuations in th
inertial range. Understanding the statistical properties of
termittency is one of the most challenging open problems
three-dimensional fully developed turbulence. The structu
that arise in a random flow of stationary turbulence resem
high peaks at random places and random times. The inter
between them are characterized by a low intensity an
large size. Rare peaks are the hallmarks of probability d
sity fundamental’s ~PDF’s! non-Gaussian tails. Thes
strongly non-Gaussian activities are statistically sca
invariant processes responsible for energy transfer. Inter
tency in the inertial range is usually analyzed by means
the statistical properties of velocity differences,d ru(x)
5u(x1r )2u(x) @1#. The overwhelming majority of experi
mental and theoretical works have been brought forward
characterize structure functions, i.e.,Sp5^(d ru(x))p&. A
wide agreement exists on the fact thatSp(r ) exhibits a scal-
ing behavior in the limit of high Reynolds number, that
Sp(r );(r /L)zp for L@r @hk , whereL is the scale of energy
injection,hk5(n3/e)1/4 is the dissipative scale,e is the mean
energy dissipation range, andn is the kinematic viscosity.
Rare peaks in the random flows are signaled by a nonlin
form of z(p). In other words the velocity increments a
multifractal, andz(p)’s do not follow the celebrated K41
theory, z(p)5p/3. Recently@2–4# it was proposed that i
would be more natural to look at single time correlatio
among velocity increment fluctuations at different scales

Fn~xur 1 ,r 2 , . . . ,r n!5^d r 1
u~x!d r 2

u~x!•••d r n
u~x!&,

~1!

where all the scalesr i are lying in the inertial range, i.e.
h!r i!L. For simplicity we confine the discussion to long
tudinal velocity increments. Fusion rules@2–4# that describe
the asymptotic properties ofn-point correlation functions
when some of the coordinates tend toward one other
derived from two fundamental assumptions which are
paramount importance for a description of nonperturba
aspects of the analytic theory of stationary turbulence. T
fusion rules were tested experimentally, and a good ag
ment between experiment and theory observed@5#. If p,n
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pairs of coordinates of velocity differences merge, with ty
cal separationsr i;r for i<p and the remaining separatio
at the order ofR, such thatr !R!L , the fused multi-scale
correlation is defined as

Fp1q~r ,R![^@u~x1r !2u~x!#p@u~x1R!2u~x!#q&

[^@d ru~x!#p@dRu~x!#q&. ~2!

It has been deduced that

Fp1q~r ,R!;Sp~r !Sp1q~R!/Sp~R!. ~3!

On the other hand, multiscale correlation functions in hi
Reynolds number experimental turbulence, numerical sim
lations, and synthetic signal were recently investigated
Benzi et al. @6#, and it was found that whenever a simp
scaling ansatz based on uncorrelated multiplicative proce
@6# is not prevented by symmetry arguments, the multisc
correlations are in good agreement with the fusion rule p
diction even if strong corrections due to subleading terms
seen for small-scale separationr /R;O(1). All the findings
has led to the conclusion that multiscale correlation functio
measured in turbulence are fully consistent with a multip
cative, almost uncorrelated, random process for the evolu
of velocity increments in scale . Although a successful int
pretation of the fusion rules can be realized by considerin
multiplicative random process for the evolution of veloci
increments on a length scale, it is at most a phenomenol
cal model, and it is not based on first principles calculatio
Other experimental investigations of the behavior of con
tional probability densities of velocity increments in sca
have shown that the Markovian nature of velocity increme
in terms of length scale and in the inertial range would s
port the experimental data@7#. In fact the necessary conditio
of ‘‘Markovianity’’ for velocity increments has been teste
experimentally, and from this phenomenological scenar
for modeling the intermittency have been developed@7#. The
aforementioned ideas were later supported by invoking
theoretical ideas inspired by Polyakov@8# and Yakhot@9#
based on the operator product expansion~OPE! and general
invariances of the Navier-Stokes equation@9#. In this paper
6563 ©2000 The American Physical Society
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we show that, relying on Yakhot’s closure for an infini
Reynolds number, the phenomenological interpretation gi
by Benzi et al. @6# in finite Reynolds numbers can still b
achieved in some approximations. We will propose an
derlying dynamical process in scale which incorporates
fusion rules of multiscale correlation functions in the infin
Reynolds limit. The calculations are consistent with a pict
of an almost uncorrelated random multiplicative process
least in the Fokker-Planck description of turbulence c
cades. Furthermore we are able to connect the fusion rule
the Markovian nature by a simple operator formalism,
preserving all the terms in the Kramers-Moyal’s evoluti
operator of velocity increments.

Let us start with the Navier–Stokes equation

vt1~v•“ !v5n“2v2
“p

r
1f~x,t !, “•v50 ~4!

for the Eulerian velocityv(x,t) and the pressurep with vis-
cosity n, in N-dimensions. The forcef(x,t) is an external
stirring force, which injects energy into the system on
length scaleL. More specifically one can take, for instance
Gaussian distributed random force, which is identified by
two moments.

^ f m~x,t ! f n~x8,t8!&5k~0!d~ t2t8!kmn~x2x8! ~5!

and^ f m(x,t)&50, wherem,n5x1 ,x2 , . . . ,xN . The correla-
tion functionkmn(r ) is normalized to unity at the origin, an
decays rapidly enough wherer becomes larger than or equ
to integral scaleL; that is

kmn~r i j !5k~0!F12
r i j

2

2L2
dm,n2

~r i j !m~r i j !n

L2 G ,

with k(0) andL[1, wherer i j 5uxi2xj u.
Recently Yakhot@9# generalized Polyakov’s approach

Burgers turbulence@8# for strong turbulence. He used th
OPE approach to close the equation for the velocity inc
ment PDF, and showed that in homogeneous and isotr
turbulence the PDF of the longitudinal structure functi
Sq5^@u(x1r )2u(x)#q&5^Uq& satisfies the following equa
tion in the limit r→0;

]

]U
U

]P

]r
2B0

]P

]r
52

A

r

]

]U
UP1

urms

L

]2

]U2
UP, ~6!

where A5(31B)/3 and B52B0.0 and for the Navier-
Stokes turbulence it has been shown thatB;20 can be de-
rived by a self-consistent calculation@9#. The last term on the
right hand side is responsible for the breakdown of Galile
invariance in the limited Polyakov sense, which means t
the single pointurms induced by random forcing enters th
resulting expression for velocity increment PDF.

Now one can show that the probability density, and a
result the conditional probability density of the velocity d
ference, satisfies the Kramers-Moyal~KM ! evolution equa-
tions @11#
n
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]P

]r
5LKM~U,r !P,

~7!

LKM5 (
n51

`

~21!n
]n

]Un
@D (n)~r ,U !P#,

where D (n)(r ,U)5(an /r )Un1bnUn21. We have found
that the coefficientsan andbn depend onA, B, urms , and the
inertial length scaleL. They are given as

an5~21!n
A

~B11!~B12!~B13!•••~B1n!

and

bn5~21!n
urms

L

1

~B12!~B13!•••~B1n!
,

where b150 by homogeneity @11#. The coefficients
D (n)(r ,U) are the small scale limit of the conditional mo
ments@10#. They fully characterize the statistics of eddy di
tribution in the inertial range, and are defined as

D (n)~U2!5 lim
r 1→r 2

1

r 12r 2
E ~U12U2!nP~U1 ,r 1uU2 ,r 2!dU1 .

~8!

It is noted thatP(U1 ,r 1uU2 ,r 2) also satisfies Eq.~7!, but
with a different boundary condition@10#. The Kramers-
Moyal coefficients are the main observables of a Mark
process from which all the terms in the Kramers-Moyal o
erator will be determined. It is a well known theore
~Pawula theorem! of Markov processes that whenever th
fourth order Kramers-Moyal coefficient tends to zero
other terms with higher order derivatives tend to zero@10#.
Then there is a distinction between Markov processes in
Fokker-Planck description, when just the first two terms
the evolution operator in scale are important, and Mark
processes in which all the terms should be preserved and
encoded in the coefficients. Thanks to the detailed anal
carried over experimental data@7#, the functional form of the
first four Kramers-Moyal coefficients are obtained in the
nite Reynolds number. It has been observed that the fo
order conditional moment tends to zero, from which, by
voking Pawula’s theorem, the Fokker-Planck equation wo
be a reasonable evolution equation. In the meantime
present authors showed that Kramers-Moyal coefficie
which are derived from the Yakhot modeling, are consist
with the experimental observations@11#. It is interesting that
the functional forms of the different coefficientsD (n)(U,r )
up to the fourth order conditional moment, identically su
port the experimental observations@7#. Although the func-
tional forms of the drift and diffusion coefficients are th
same, the resultant Markovian process in the framework
Yakhot’s model is a Kramers-Moyal type rather than
Fokker-Planck one. However, one should be careful in co
paring the phenomenological description of Friedrich a
Peinke@7# and the predictions of Yakhot’s model, since th
phenomenological picture is grounded in observations
mostly accessible Reynolds numbers available in the exp
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ments with free jets while Yakhot’s theory@9# was devel-
oped for the infinite Reynolds number limit. Still we nee
much more reasonable data for making a quantitative ju
ment about whether the theoretical predicted Kramers-Mo
Markovian cascade from the Yakhot model is compara
with the experiment or not. The intermittency exponent
the structure functions can be derived from Eq.~7!; z(p)
5Ap/(B1p). It is easy to see that the ratio of different KM
coefficients are controlled by theB parameter, as it is obvi
ous whenB→` K41 scaling is recovered andB→0 pro-
duces the extreme case of multiscaling related to Burg
intermittency@9#. The Kramers-Moyal’s description of PD
deformation in scale was also supported by an exact com
tation for the compressible turbulence in the high Mach nu
ber limit @12#. In that case the numerical values of theA and
B parameters are determined without any need for nume
estimation. Recalling the original idea of the Markovia
property of energy cascade in scale, we take a step fur
and calculate the more general objects of the cascade,
the unfused multiscale correlations. Assuming the Mark
ian nature of velocity increments in scale and the propo
form of the evolution operatorLKM(U,r ), one can in prin-
ciple calculate any correlation among velocity increments
different scales:

Fn~xur 1 ,r 2 , . . . ,r n!5^U~r 1!U~r 2!¯U~r n!&

5E dU~r 1!•••dU~r n!U~r 1!•••U~r n!

3P~U1 ,r 1 ;U2 ,r 2 ; . . . ;Un ,r n!.

The joint probability P(U1 ,r 1 ;U2 ,r 2 ; . . . ;Un ,r n) can be
calculated by taking advantage of a Markovian property
terms of conditional probabilities, i.e.,

P~U1 ,r 1 ;U2 ,r 2 ; . . . ;Un ,r n!

5P~U1 ,r 1uU2 ,r 2!P~U2 ,r 2uU3 ,r 3!•••

3P~Un21 ,r n21uUn ,r n!P~Un ,r n!. ~9!

The conditional PDF of velocity increments can be written
a scalar-ordered operator

P~U1 ,l1uU2 ,l2!5T Fexp1S E
l2

l1
dlLKM(U1 ,l) D G

3d~U12U2!.

Thus in a calculation ofn-point multiscale correlation, a se
ries of conditional operators would emerge in the integra
of Eq. ~9!. When some of the coordinates coalesce, the c
ditional operator tends to a Diracd function. The reduction
of the conditional probability between the coalescing coor
nates simplifies the calculations. The only remaining con
tional operator will be the probability of observing the typ
cal velocity U1 increment between one subclass of fus
points, conditioned on observing the typical velocity incr
mentU2 in the other subclass of fused points. We explici
examine the behavior ofFp1q(l1 ,l2) defined in Eq.~1!,
wherel15 ln(L/r) andl25 ln(L/R):
g-
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Fp1q~l1 ,l2!5^Up~l1!Uq~l2!&

5E dU1dU2d~U12U2!3P~U2 ,l2!

3~e2(l12l2)LKM
† (U1)U1

p!U2
q ~10!

We restrict the calculations to the Galilean invariance~GI!
invariant approximation neglecting theO(urmsr /L) opera-
tors in LKM(U,l). The crucial point in the above approx
mation is that in the GI regime the Kramers-Moyal coef
cients are scale independent, so that the entry s
dependence of the conditional probabilities would revea
simple subtraction of the two logarithmic scales, i.e.l1

2l2 in the exponent. BecauseLKM
† (U1)U1

p5z(p)U1
p , we

will obtain the proposed form of the fusion rules in Eq.~2!
with z(p)5Ap/(p1B). Any other multiscale correlation
function is also tractable under the same approximatio
The fusion rules were first introduced@2–4# by invoking two
Kolmogorov type assumptions. The first one assumes s
invariance for all correlation functions in the inertial rang
The second, called ‘‘universality,’’ meaning that when som
arbitrary set of velocity differences in the correlation fun
tions is fixed in a scaleL, the precise choice of difference
will affect the correlation functions just as an overall facto
In terms of conditional averages the second proposit
means that

^U~r 1!puU~r 2!q&5Sp~r 1!Fp,q~r 2!, ~11!

where it is also assumed that the scale ofr 2 is of the order of
integral scale, whiler 1 is in the inertial range. The function
Fp,q(r 2) is a homogeneous function with a scaling expon
zn2zp , and is associated with the remainingn-p indices of
F. Mathematically the above conditional correlation is eas
verified:

^U~r 1!puU~r 2!q&5Sp~r 1!U2
p/Sp~r 2!

In Yakhot modeling the scaling hypothesis is taken into
count from the very beginning, when the relevant OPE ter
are chosen to close the equation governing the genera
function of the longitudinal velocity increments. Howeve
we show that at least in the framework of Yakhot modelin
the universality proposition is theresultof the Markovianity
of the evolution of velocity increments in scale. On the oth
hand, the necessary proof of the Markovian property w
verified through the special scalar-ordered form of the c
ditional probabilities. This itself arose from the general i
variances and scaling constraint of the Navier-Stokes eq
tion. Thus the universality condition in the language
multiscale correlation functions has in its heart a very rob
scaling invariance under as infinite parameter scaling gr
@1#. We should emphasise that the nonuniversal effects of
large scale motions can also manifest themselves thro
scale dependent terms in the Kramers-Moyal operator. S
the general form of the universality assumption would be
leading behavior, while theO(urmsr /L) term will be the sub-
leading correction inducing large scale effects@13#.

Within the experimentally verified approximation that n
glects third and higher order KM coefficients@11,7#, one can
write the equivalent diffusion process on a scale which
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namically gives the relation between velocity increments
two different scales. In fact, approximating the KM equati
with a Fokker-Planck evolution kernel can be interpreted
if a velocity incrementU is evolved in ‘‘scale’’l ~logarith-
mic length scale!, by the Langevin equation@10#

]U

]l
5D̃ (1)~U,l!1AD̃ (2)~U,l!h~l!,

whereh(l) is a white noise and the diffusion term acts as
multiplicative noise. Using Ito’s prescription@10# the multi-
point correlation function can be written in the form of a pa
integral as

F~l1 ,l2!5E DUUp~l1!Uq~l2!

3expF E
l1

l2S ]U

]l
2D1~U,l!

AD2~U,l!
D dlG 1/2

3P~U2 ,l2! ~12!

By a simple application of Bayesian rule probability dens
in the outer scale,l2 can also be written as a path integr
entering the information of a nearly Gaussian PDF on
integral scale@9#. Building up all the terms in a descriptiv
way, the joint probabilityP(U1 ,l1 ;U2 ,l2) is represented a
a path integral over all possiblepathsbetweenU(l1) and
U(l2), transferring all the information about of the integr
scale into the calculation in an intermittent way. Withou
further attempt at calculating the multiscale correlation
the path integral representation, we turn our attention to
Langevin dynamics instead. The resulting process is the
known Kubo@10# oscillator multiplicative process. By usin
the Ito @10# prescription, one can deduce that

dl1
U~x!5W~l1 ,l2!dl2

U~x!. ~13!

The multiplierW(l1 ,l2) can be easily derived in terms o
a1 anda2 and the Wiener process at two logarithmic sca
as.

W~l1 ,l2!5exp„$2a1~l12l2!

1Aa2@W~l1!2W~l2!#%…1/2.

Equation ~13! encodes a simple cascade process. Casc
processes are simple and well known useful tools to desc
the leading phenomenology of intermittent energy transfe
the inertial range. Both anomalous scaling exponents
viscous effects@1# can be reproduced by choosing a suita
random process for the multiplier. Cascade models, not
lated to the equations of motion, give quantitatively corr
values ofj2n ; however, no model was able to address
problem of the asymmetry of the probability density functi
P(U,r )ÞP(2U,r ), and as a consequence predict the sc
ing exponents and amplitudes of the odd order struc
functions. Relying on the derived KM equation from th
Navier-Stokes equation in the infinite Reynolds numbers,
t

s

n

y
e
ll

s

de
be
n
d

e-
t
e

l-
re

e

have shown that an equivalent cascade model can be re
to the Fokker-Planck approximation. The approximate p
cess corresponds to an almost uncorrelated multiplica
process over the cascade of velocity increments in scale.
is equivalent to a log-normal description of scaling exp
nents. Structure functions are described in terms of a mu
plier W(l1 ,l2) through Sp(r )5Cp^@W(r /L)#p&, where
from the Langevin equation a pure power law arises in
high Reynolds regimê@W(r /L)#p&;(r /L)z(p). In this ap-
proximation the scaling exponents would bez(p)52pa1
1p(p21)a2/2. From a direct calculation of the Langevi
equation one can easily find the behavior of the multisc
correlation functionFp1q(r ,R). In the same framework, it is
straightforward to show that

Fp1q~r ,R!;^@W~r ,R!#p@W~R,L !#q&

; K FWS r

RD G pL K FWS R

L D GqL
;Sp~r !Sp1q~R!/Sp~R!. ~14!

The independence of multipliers in two different scales
always assumed for the underlying cascade process; o
wise the following relation would not be held. The prese
framework equivalently encodes the following requireme
by the obvious independency of increments in a Wiener p
cess. Recently Benziet al. @6# analyzed multiscale correla
tion functions from finite but highest reachable Reynolds
periments and synthetic signals. They elegantly sough
find whether fusion rules~3! are compatible with random
cascade phenomenology. Their main result was that all m
tiscale correlation functions are well reproduced in th
leading termr /R→0 by a simple uncorrelated random ca
cade. In Yakhot modeling of the dynamics of the longitud
nal velocity increments in scale, all the above results
recovered in the Fokker-Planck approximation. The pred
tion of Yakhot theory for infinite Reynolds number turbu
lence is consistent with fusion rules; however the alm
uncorrelated multiplicative process gives the statistics
multiscale correlations only in Fokker-Planck approxim
tion. Thus, qualitatively, the theoretical predictions of Y
khot and Benzi’s observations are consistent, but since th
are no data available for infinite Reynolds numbers we c
not reveal anything quantitative regarding the compatibi
of theory and experiment. In addition, the question of a tr
sition to an infinite Reynolds limit cannot be answered fro
the theoretical modeling of Yakhot, since the theory does
have any controlling parameter. Actually the proposed c
sure for the dissipation anomaly is written in the infini
Reynolds limit, and seeking the transition to a finite Re
nolds numbers is quantitatively impossible within th
theory. It is also interesting to seek the limiting behavior
the multiscaling correlation function for Burgers turbulenc
which is tractable by taking the limit ofB→0 in our formu-
lation. Equation~3! shows that the multiscaling correlatio
function will be independent of the outer scaleR, which is
consistent with our knowledge about Burgers turbulen
@14#. We think that preserving all the terms in the KM equ
tion would provide complete information about cascade
length scale, and this would answer the question of whe
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there are other subleading processes acting for energy t
fer from large to small scales. Preserving the GI break
terms in the corresponding stochastic processes would
answer an important unanswered question regarding the
fect of uneven PDF’s of velocity increments on the casca
-
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