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Multiscale correlation functions in strong turbulence
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Under the framework of YakhdPhys. Rev. E57, 1737(1998], we model intermittent structure functions
in fully developed turbulence, based on the experimentally supported Markovian nature of turbulence cascades
[Friedrich and Peinke, Phys. Rev. Let8, 863(1997], and calculate the multiscaling correlation functions.
Fusion rules[L'vov and Procaccia, Phys. Rev. Left6, 2898 (1996], which were experimentally tested
[Benzi, Biferale, and Toschi, Phys. Rev. Le8D, 3244 (1998] to be compatible with almost uncorrelated
multiplicative process are analytically checked by direct calculations.

PACS numbels): 47.27.Ak, 47.27.Gs, 47.27.Jv, 47.40.Ki

One of the most important issues in stationary turbulencepairs of coordinates of velocity differences merge, with typi-
is the intermittent behavior of velocity fluctuations in the cal separations;~r for i<p and the remaining separation
inertial range. Understanding the statistical properties of inat the order ofR, such thar <R<L , the fused multi-scale
termittency is one of the most challenging open problems ircorrelation is defined as
three-dimensional fully developed turbulence. The structures
that arise in a random flow of stationary turbulence resemble Forq(r R =([u(x+1)—u(x)PLu(x+R) —u(x)]%
high peaks at random places and random times. The intervals
between them are characterized by a low intensity and a =([ 6;u(x)]P[ 5ru(X)]%). )
large size. Rare peaks are the hallmarks of probability den-
sity fundamental's (PDF’s) non-Gaussian tails. These It has been deduced that
strongly non-Gaussian activities are statistically scale-
invariant processes responsible for energy transfer. Intermit- Fprq(1R)~Sy(1) S+ o(RI/Sy(R). 3
tency in the inertial range is usually analyzed by means of
the statistical properties of velocity difference§,u(x)  On the other hand, multiscale correlation functions in high
=u(x+r)—u(x) [1]. The overwhelming majority of experi- Reynolds number experimental turbulence, numerical simu-
mental and theoretical works have been brought forward tgations, and synthetic signal were recently investigated by
characterize structure functions, i.65,=((5;u(x))?). A Benzietal. [6], and it was found that whenever a simple
wide agreement exists on the fact tig(r) exhibits a scal- scaling ansatz based on uncorrelated multiplicative processes
ing behavior in the limit of high Reynolds number, that is [6] is not prevented by symmetry arguments, the multiscale
Sp(r)~(r/L)% for L>r> 7, whereL is the scale of energy correlations are in good agreement with the fusion rule pre-
injection, 7= (v*/€)*is the dissipative scale,is the mean diction even if strong corrections due to subleading terms are
energy dissipation range, andis the kinematic viscosity. seen for small-scale separatiofR~O(1). All the findings
Rare peaks in the random flows are signaled by a nonlineafas led to the conclusion that multiscale correlation functions
form of {(p). In other words the velocity increments are measured in turbulence are fully consistent with a multipli-
multifractal, and{(p)’s do not follow the celebrated K41 cative, almost uncorrelated, random process for the evolution
theory, {(p)=p/3. Recently[2-4] it was proposed that it of velocity increments in scale . Although a successful inter-
would be more natural to look at single time correlationspretation of the fusion rules can be realized by considering a
among velocity increment fluctuations at different scales, muiltiplicative random process for the evolution of velocity

increments on a length scale, it is at most a phenomenologi-
Fa(X|rq,ro, ... ,rn)=<5rlu(x) O U(X) - - - 5,nu(x)), cal model, and it is not based on first principles calculations.
(1) Other experimental investigations of the behavior of condi-
tional probability densities of velocity increments in scale
where all the scales; are lying in the inertial range, i.e., have shown that the Markovian nature of velocity increments
n<<r;<L. For simplicity we confine the discussion to longi- in terms of length scale and in the inertial range would sup-
tudinal velocity increments. Fusion rulg3—4] that describe port the experimental daf&]. In fact the necessary condition
the asymptotic properties afi-point correlation functions of “Markovianity” for velocity increments has been tested
when some of the coordinates tend toward one other arexperimentally, and from this phenomenological scenarios
derived from two fundamental assumptions which are offor modeling the intermittency have been developg&d The
paramount importance for a description of nonperturbativeaforementioned ideas were later supported by invoking the
aspects of the analytic theory of stationary turbulence. Theheoretical ideas inspired by Polyak¢8] and Yakhot[9]
fusion rules were tested experimentally, and a good agredsased on the operator product expangioRE and general
ment between experiment and theory obsef&d If p<n invariances of the Navier-Stokes equat{®). In this paper
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we show that, relying on Yakhot's closure for an infinite

Reynolds number, the phenomenological interpretation given T Lkm(U,r)P,

by Benziet al. [6] in finite Reynolds numbers can still be -
achieved in some approximations. We will propose an un- " N (7)
derlying dynamical process in scale which incorporates the _ _asn J (n)

fusion rules of multiscale correlation functions in the infinite LKM_nZl (=1 (;Un[D (r,.U)P],

Reynolds limit. The calculations are consistent with a picture

of an almost uncorrelated random multiplicative process, awvhere D(™(r,U)=(a,/r)U"+B,U""1. We have found
least in the Fokker-Planck description of turbulence casthat the coefficients, and g, depend o, B, U,s, and the
cades. Furthermore we are able to connect the fusion rules tnertial length scalé.. They are given as

the Markovian nature by a simple operator formalism, by

preserving all the terms in the Kramers-Moyal’s evolution N A
operator of velocity increments. an=(—1) (B+1)(B+2)(B+3)---(B+n)
Let us start with the Navier—Stokes equation
and
_ vz, YP _
Vi+ (V- V)v=pV v—7+f(x,t), V.v=0 (4 Urms 1
A= (D T BT 2)B+3)- - (B+n)’

for the Eulerian velocity(x,t) and the pressurp with vis-

cosity v, in N-dimensions. The forcé(x,t) is an external where f,=0 by homogeneity [11]. The coefficients

DM(r,U) are the small scale limit of the conditional mo-

stirring force, which injects energy into the system on a _ - )
length scald_. More specifically one can take, for instance amentg[lq]. They fully characterize the statistics of eddy dis-
! tribution in the inertial range, and are defined as

Gaussian distributed random force, which is identified by its
two moments.

1
D(“)(U2)= lim - J(Ul_UZ)nP(UlrrlllJZ-rZ)dUl-
(FLDF, (X)) =K(0) (=K, (x=x)  (5) Ea ®
and(f,(x,t))=0, whereu,v=x;,X5, ... Xy. The correla- |t js noted thatP(U;,r;|U,,r,) also satisfies Eq(7), but

tion functionk ,,(r) is normalized to unity at the origin, and jth a different boundary conditioril0]. The Kramers-
decays rapidly enough wherebecomes larger than or equal \oyal coefficients are the main observables of a Markov

to integral scald; that is process from which all the terms in the Kramers-Moyal op-
erator will be determined. It is a well known theorem
r2 (ri) (ri) (Pawula theoremof Markov processes that whenever the
Ko(rip) =k(0)| 1-=L5, ,—— fourth order Kramers-Moyal coefficient tends to zero all
2Lz ™ L2

other terms with higher order derivatives tend to zgt0)|.
Then there is a distinction between Markov processes in the
with k(0) andL=1, wherer ;=[x —X;|. Fokker-Planck description, when just the first two terms in
Recently Yakho{9] generalized Polyakov’'s approach to the evolution operator in scale are important, and Markov
Burgers turbulencg8] for strong turbulence. He used the processes in which all the terms should be preserved and are
OPE approach to close the equation for the velocity increencoded in the coefficients. Thanks to the detailed analysis
ment PDF, and showed that in homogeneous and isotropicarried over experimental dafté], the functional form of the
turbulence the PDF of the longitudinal structure functionfirst four Kramers-Moyal coefficients are obtained in the fi-
Sq=([u(x+r)—u(x)]%=(UY satisfies the following equa- nite Reynolds number. It has been observed that the fourth
tion in the limitr—o0; order conditional moment tends to zero, from which, by in-
voking Pawula’s theorem, the Fokker-Planck equation would
g op P A 9 u P be a reasonable evolution equation. In the meantime the
r—=———UP+—2——UP, (6) Ppresent authors showed that Kramers-Moyal coefficients,
ar rou L 2 which are derived from the Yakhot modeling, are consistent
with the experimental observatiofikl]. It is interesting that
where A=(3+B)/3 andB=—B,>0 and for the Navier- the functional forms of the different coefficienB™ (U,r)
Stokes turbulence it has been shown tBat20 can be de- up to the fourth order conditional moment, identically sup-
rived by a self-consistent calculatip®]. The last term on the port the experimental observatiofig]. Although the func-
right hand side is responsible for the breakdown of Galileartional forms of the drift and diffusion coefficients are the
invariance in the limited Polyakov sense, which means thasame, the resultant Markovian process in the framework of
the single pointu,,s induced by random forcing enters the Yakhot's model is a Kramers-Moyal type rather than a
resulting expression for velocity increment PDF. Fokker-Planck one. However, one should be careful in com-
Now one can show that the probability density, and as garing the phenomenological description of Friedrich and
result the conditional probability density of the velocity dif- Peinke[7] and the predictions of Yakhot's model, since the
ference, satisfies the Kramers-Moy#M) evolution equa- phenomenological picture is grounded in observations of
tions[11] mostly accessible Reynolds numbers available in the experi-

au -~ ar




PRE 61 MULTISCALE CORRELATION FUNCTIONS IN STRONG . .. 6565

ments with frge_jgts while Yakhot's thegl[\g] was devel- Fprq(h1.h2)=(UP(\1)U(N,))
oped for the infinite Reynolds number limit. Still we need

much more reasonable data for making a quantitative judg-
ment about whether the theoretical predicted Kramers-Moyal
Markovian cascade from the Yakhot model is comparable T
with the experiment or not. The intermittency exponent of X (e~ M tmUDUR) UG (10
the structure functions can be derived from E@); Z(p)

=Ap/(B+p). Itis easy to see that the ratio of different K

coefficients are controlled by tH& parameter, as it is obvi- . - 9 .
ous whenB— K41 scaling is recovered anB—0 pro- tors inLxym(U,N\). The crucial point in the above approxi-

duces the extreme case of multiscaling related to Burger@ation is that in the GI regime the Kramers-Moyal coeffi-
intermittency[9]. The Kramers-Moyal's description of PDF Ci€nts are scale independent, so that the entry scale
deformation in scale was also supported by an exact COmplg__ependence of .the conditional probqb|lltlgs would r_eveal a
tation for the compressible turbulence in the high Mach numSimple subtraction of the two Tlogarlthmlc scales, i

ber limit [12]. In that case the numerical values of thand ~ — A2 in the exponent. Because,(U1)Ui={(p)UT, we

B parameters are determined without any need for numerica¥ill obtain the proposed form of the fusion rules in E@)
estimation. Recalling the original idea of the MarkovianWith {(p)=Ap/(p+B). Any other multiscale correlation
property of energy cascade in scale, we take a step furthdvnction is also tractable under the same approximations.
and calculate the more general objects of the cascade, i.d.he fusion rules were first introduc¢@—4] by invoking two

the unfused multiscale correlations. Assuming the MarkovKolmogorov type assumptions. The first one assumes scale
ian nature of velocity increments in scale and the propose#fivariance for all correlation functions in the inertial range.
form of the evolution operatok,(U,r), one can in prin- The_ second, called “L_mlvgrsallty,” meaning that when some
ciple calculate any correlation among velocity increments irarbitrary set of velocity differences in the correlation func-

:f dU;dU,0(U1—U3) XP(Uz,\y)

M We restrict the calculations to the Galilean invariariGs)
invariant approximation neglecting th@(u,,¢ /L) opera-

different scales: tions is fixed in a scal&, the precise choice of differences
will affect the correlation functions just as an overall factor.
_ In terms of conditional averages the second proposition
FaX|ra,rz, - ) =(U(r)U(ry)---U(ry)) means that
:f du(ry)- - dU(ryU(ry)---U(ry) (UrD)PIU(r) M =Sy(r )@y o(r2), (1)
XP(Uq,ri;Us,ro; .0 3Up, ). where it is also assumed that the scale ois of the order of
integral scale, while ; is in the inertial range. The function
The joint probability P(Uq,r1;U,,r,; ... ;U,,ry) can be @ 4(r,) is @ homogeneous function with a scaling exponent
calculated by taking advantage of a Markovian property in{,— ¢, and is associated with the remainingp indices of
terms of conditional probabilities, i.e., F. Mathematically the above conditional correlation is easily
verified:

P(Up,r;Us,rp; ..U )

(U(rp)PlU(ra)®)=S,(r1)Ub/Sy(r)
=P(Uy,r1|U,,r5)P(Up,rplUg,rg)- -
In Yakhot modeling the scaling hypothesis is taken into ac-
XP(Up-1,M-1|Un 1) P(Uy 1) ©) count from the very beginning, when the relevant OPE terms
. o ) are chosen to close the equation governing the generating
The conditional PDF of velocity increments can be written asnction of the longitudinal velocity increments. However,
a scalar-ordered operator we show that at least in the framework of Yakhot modeling,

the universality proposition is thesultof the Markovianity

_ M of the evolution of velocity increments in scale. On the other
P(Ul,)\1|U2,)\2)—7{exp+( sz d)‘LKM(Ul’)‘)” hand, the necessary proof of the Markovian property was
verified through the special scalar-ordered form of the con-

X 8(Up—Uy). ditional probabilities. This itself arose from the general in-

variances and scaling constraint of the Navier-Stokes equa-
Thus in a calculation of-point multiscale correlation, a se- tion. Thus the universality condition in the language of
ries of conditional operators would emerge in the integrandnultiscale correlation functions has in its heart a very robust
of Eq. (9). When some of the coordinates coalesce, the conscaling invariance under as infinite parameter scaling group
ditional operator tends to a Dirag function. The reduction [1]. We should emphasise that the nonuniversal effects of the
of the conditional probability between the coalescing coordifarge scale motions can also manifest themselves through
nates simplifies the calculations. The only remaining condiscale dependent terms in the Kramers-Moyal operator. Still
tional operator will be the probability of observing the typi- the general form of the universality assumption would be the
cal velocity U; increment between one subclass of fusedeading behavior, while th@(u,m« /L) term will be the sub-
points, conditioned on observing the typical velocity incre-leading correction inducing large scale effelc8].
mentU, in the other subclass of fused points. We explicitly  Within the experimentally verified approximation that ne-
examine the behavior aof,, ,(\1,)A,) defined in Eq.(1), glects third and higher order KM coefficierjtsl, 7], one can
where\;=In(L/r) and\,=In(L/R): write the equivalent diffusion process on a scale which dy-
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namically gives the relation between velocity increments ahave shown that an equivalent cascade model can be related
two different scales. In fact, approximating the KM equationto the Fokker-Planck approximation. The approximate pro-
with a Fokker-Planck evolution kernel can be interpreted agess corresponds to an almost uncorrelated multiplicative
if a velocity incremenuJ is evolved in “scale”\ (logarith-  process over the cascade of velocity increments in scale. This

mic length scalg by the Langevin equatiofi0] is equivalent to a log-normal description of scaling expo-
nents. Structure functions are described in terms of a multi-

ou — plier W(\i,\p) through Sp(r)=Cy([W(r/L)]?), where
ﬁzD(l)(Uﬁ\H VD@(U,\) (), from the Langevin equation a pure power law arises in the

high Reynolds regimé&[ W(r/L)]?)~ (r/L)®). In this ap-
wheren(\) is a white noise and the diffusion term acts as aproximation the scaling exponents would bgp)=—pa;
multiplicative noise. Using Ito’s prescriptidii0] the multi- ~ +P(p—1)a,/2. From a direct calculation of the Langevin

point correlation function can be written in the form of a pathequation one can easily find the behavior of the multiscale
integral as correlation function?, , (r,R). In the same framework, it is

straightforward to show that

f()\l,hg)zf DUUP(N,)UY(N,) Forq(r,R~(DMr,R)IPDMR,L) 1%
. (ARl AT
- ~ W = W| —
SARRCECEY ~Sy(1)Sp 4o RIS,(R). (14
XP(Uz,\2) (120 The independence of multipliers in two different scales is

) L _ . . always assumed for the underlying cascade process; other-
By a simple application of Bayesian rule probability density yise the following relation would not be held. The present
in the outer scale), can also be written as a path integral gramework equivalently encodes the following requirement
entering the information of a nearly Gaussian PDF on ar,y the gbvious independency of increments in a Wiener pro-
integral scalg9]. Building up all the terms in a descriptive oss Recently Benzit al. [6] analyzed multiscale correla-
way, the joint probability?(Uy ,A1;U3,\;) is represented as jon functions from finite but highest reachable Reynolds ex-
a path integral over all possibjeathsbetweenU(\;) and  periments and synthetic signals. They elegantly sought to
U()\z)! transferring all .the 'lnformatlon about of the |'ntegral find whether fusion rule€3) are compatible with random
scale into the calculation in an intermittent way. Without a55cade phenomenology. Their main result was that all mul-
further attempt at calculating the multiscale correlation bytiscale correlation functions are well reproduced in their
the path integral representation, we turn our attention to th?eading termr/R—0 by a simple uncorrelated random cas-
Langevin dynamics instead. The resulting process is the wellage |In Yakhot modeling of the dynamics of the longitudi-
known Kubo[10] oscillator multiplicative process. By using na velocity increments in scale, all the above results are

the Ito[10] prescription, one can deduce that recovered in the Fokker-Planck approximation. The predic-
tion of Yakhot theory for infinite Reynolds number turbu-
O, U(X)=WIN1,N3)6,,U(X). (13)  lence is consistent with fusion rules; however the almost

o _ . _ uncorrelated multiplicative process gives the statistics of
The muiltiplier W(\41,\,) can be easily derived in terms of multiscale correlations only in Fokker-Planck approxima-
a; anda, and the Wiener process at two logarithmic scalesiion. Thus, qualitatively, the theoretical predictions of Ya-

as. khot and Benzi's observations are consistent, but since there
are no data available for infinite Reynolds numbers we can-

W(N1 No)=exp{—ai(A1—\y) not reveal anything quantitative regarding the compatibility

of theory and experiment. In addition, the question of a tran-

+Va[W(N ) —W(A) THY2 sition to an infinite Reynolds limit cannot be answered from

the theoretical modeling of Yakhot, since the theory does not
Equation (13) encodes a simple cascade process. Cascadeave any controlling parameter. Actually the proposed clo-
processes are simple and well known useful tools to describsure for the dissipation anomaly is written in the infinite
the leading phenomenology of intermittent energy transfer irReynolds limit, and seeking the transition to a finite Rey-
the inertial range. Both anomalous scaling exponents andolds numbers is quantitatively impossible within that
viscous effect$1] can be reproduced by choosing a suitabletheory. It is also interesting to seek the limiting behavior of
random process for the multiplier. Cascade models, not rethe multiscaling correlation function for Burgers turbulence,
lated to the equations of motion, give quantitatively correctwhich is tractable by taking the limit &—0 in our formu-
values ofé,,; however, no model was able to address thelation. Equation(3) shows that the multiscaling correlation
problem of the asymmetry of the probability density functionfunction will be independent of the outer scdte which is
P(U,r)#P(—U,r), and as a consequence predict the scaleonsistent with our knowledge about Burgers turbulence
ing exponents and amplitudes of the odd order structurgl4]. We think that preserving all the terms in the KM equa-
functions. Relying on the derived KM equation from the tion would provide complete information about cascade in
Navier-Stokes equation in the infinite Reynolds numbers, wéength scale, and this would answer the question of whether
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